3.151 \(\int \frac {(d+e x^n)^q}{x^3 (a+b x^n+c x^{2 n})} \, dx\)

Optimal. Leaf size=210 \[ \frac {c \left (d+e x^n\right )^q \left (\frac {e x^n}{d}+1\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{x^2 \left (-b \sqrt {b^2-4 a c}-4 a c+b^2\right )}+\frac {c \left (d+e x^n\right )^q \left (\frac {e x^n}{d}+1\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{x^2 \left (b \sqrt {b^2-4 a c}-4 a c+b^2\right )} \]

[Out]

c*(d+e*x^n)^q*AppellF1(-2/n,1,-q,(-2+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-e*x^n/d)/x^2/((1+e*x^n/d)^q)/(b^2-4
*a*c-b*(-4*a*c+b^2)^(1/2))+c*(d+e*x^n)^q*AppellF1(-2/n,1,-q,(-2+n)/n,-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)),-e*x^n/d)
/x^2/((1+e*x^n/d)^q)/(b^2-4*a*c+b*(-4*a*c+b^2)^(1/2))

________________________________________________________________________________________

Rubi [A]  time = 0.48, antiderivative size = 210, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {1556, 511, 510} \[ \frac {c \left (d+e x^n\right )^q \left (\frac {e x^n}{d}+1\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{x^2 \left (-b \sqrt {b^2-4 a c}-4 a c+b^2\right )}+\frac {c \left (d+e x^n\right )^q \left (\frac {e x^n}{d}+1\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{x^2 \left (b \sqrt {b^2-4 a c}-4 a c+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^n)^q/(x^3*(a + b*x^n + c*x^(2*n))),x]

[Out]

(c*(d + e*x^n)^q*AppellF1[-2/n, 1, -q, -((2 - n)/n), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), -((e*x^n)/d)])/((b^2
- 4*a*c - b*Sqrt[b^2 - 4*a*c])*x^2*(1 + (e*x^n)/d)^q) + (c*(d + e*x^n)^q*AppellF1[-2/n, 1, -q, -((2 - n)/n), (
-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), -((e*x^n)/d)])/((b^2 - 4*a*c + b*Sqrt[b^2 - 4*a*c])*x^2*(1 + (e*x^n)/d)^q)

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 1556

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
 :> With[{r = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/r, Int[((f*x)^m*(d + e*x^n)^q)/(b - r + 2*c*x^n), x], x] - Dist[
(2*c)/r, Int[((f*x)^m*(d + e*x^n)^q)/(b + r + 2*c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && Eq
Q[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^n\right )^q}{x^3 \left (a+b x^n+c x^{2 n}\right )} \, dx &=\frac {(2 c) \int \frac {\left (d+e x^n\right )^q}{x^3 \left (b-\sqrt {b^2-4 a c}+2 c x^n\right )} \, dx}{\sqrt {b^2-4 a c}}-\frac {(2 c) \int \frac {\left (d+e x^n\right )^q}{x^3 \left (b+\sqrt {b^2-4 a c}+2 c x^n\right )} \, dx}{\sqrt {b^2-4 a c}}\\ &=\frac {\left (2 c \left (d+e x^n\right )^q \left (1+\frac {e x^n}{d}\right )^{-q}\right ) \int \frac {\left (1+\frac {e x^n}{d}\right )^q}{x^3 \left (b-\sqrt {b^2-4 a c}+2 c x^n\right )} \, dx}{\sqrt {b^2-4 a c}}-\frac {\left (2 c \left (d+e x^n\right )^q \left (1+\frac {e x^n}{d}\right )^{-q}\right ) \int \frac {\left (1+\frac {e x^n}{d}\right )^q}{x^3 \left (b+\sqrt {b^2-4 a c}+2 c x^n\right )} \, dx}{\sqrt {b^2-4 a c}}\\ &=\frac {c \left (d+e x^n\right )^q \left (1+\frac {e x^n}{d}\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{\left (b^2-4 a c-b \sqrt {b^2-4 a c}\right ) x^2}+\frac {c \left (d+e x^n\right )^q \left (1+\frac {e x^n}{d}\right )^{-q} F_1\left (-\frac {2}{n};1,-q;-\frac {2-n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},-\frac {e x^n}{d}\right )}{\left (b^2-4 a c+b \sqrt {b^2-4 a c}\right ) x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.13, size = 0, normalized size = 0.00 \[ \int \frac {\left (d+e x^n\right )^q}{x^3 \left (a+b x^n+c x^{2 n}\right )} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(d + e*x^n)^q/(x^3*(a + b*x^n + c*x^(2*n))),x]

[Out]

Integrate[(d + e*x^n)^q/(x^3*(a + b*x^n + c*x^(2*n))), x]

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (e x^{n} + d\right )}^{q}}{c x^{3} x^{2 \, n} + b x^{3} x^{n} + a x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)^q/x^3/(a+b*x^n+c*x^(2*n)),x, algorithm="fricas")

[Out]

integral((e*x^n + d)^q/(c*x^3*x^(2*n) + b*x^3*x^n + a*x^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{n} + d\right )}^{q}}{{\left (c x^{2 \, n} + b x^{n} + a\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)^q/x^3/(a+b*x^n+c*x^(2*n)),x, algorithm="giac")

[Out]

integrate((e*x^n + d)^q/((c*x^(2*n) + b*x^n + a)*x^3), x)

________________________________________________________________________________________

maple [F]  time = 0.09, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{n}+d \right )^{q}}{\left (b \,x^{n}+c \,x^{2 n}+a \right ) x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^n+d)^q/x^3/(b*x^n+c*x^(2*n)+a),x)

[Out]

int((e*x^n+d)^q/x^3/(b*x^n+c*x^(2*n)+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{n} + d\right )}^{q}}{{\left (c x^{2 \, n} + b x^{n} + a\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)^q/x^3/(a+b*x^n+c*x^(2*n)),x, algorithm="maxima")

[Out]

integrate((e*x^n + d)^q/((c*x^(2*n) + b*x^n + a)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (d+e\,x^n\right )}^q}{x^3\,\left (a+b\,x^n+c\,x^{2\,n}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^n)^q/(x^3*(a + b*x^n + c*x^(2*n))),x)

[Out]

int((d + e*x^n)^q/(x^3*(a + b*x^n + c*x^(2*n))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x**n)**q/x**3/(a+b*x**n+c*x**(2*n)),x)

[Out]

Timed out

________________________________________________________________________________________